Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Free Neuropathol ; 42023 Jan.
Article in English | MEDLINE | ID: covidwho-2252547

ABSTRACT

In a neuropathological series of 20 COVID-19 cases, we analyzed six cases (three biopsies and three autopsies) with multiple foci predominantly affecting the white matter as shown by MRI. The cases presented with microhemorrhages evocative of small artery diseases. This COVID-19 associated cerebral microangiopathy (CCM) was characterized by perivascular changes: arterioles were surrounded by vacuolized tissue, clustered macrophages, large axonal swellings and a crown arrangement of aquaporin-4 immunoreactivity. There was evidence of blood-brain-barrier leakage. Fibrinoid necrosis, vascular occlusion, perivascular cuffing and demyelination were absent. While no viral particle or viral RNA was found in the brain, the SARS-CoV-2 spike protein was detected in the Golgi apparatus of brain endothelial cells where it closely associated with furin, a host protease known to play a key role in virus replication. Endothelial cells in culture were not permissive to SARS-CoV-2 replication. The distribution of the spike protein in brain endothelial cells differed from that observed in pneumocytes. In the latter, the diffuse cytoplasmic labeling suggested a complete replication cycle with viral release, notably through the lysosomal pathway. In contrast, in cerebral endothelial cells the excretion cycle was blocked in the Golgi apparatus. Interruption of the excretion cycle could explain the difficulty of SARS-CoV-2 to infect endothelial cells in vitro and to produce viral RNA in the brain. Specific metabolism of the virus in brain endothelial cells could weaken the cell walls and eventually lead to the characteristic lesions of COVID-19 associated cerebral microangiopathy. Furin as a modulator of vascular permeability could provide some clues for the control of late effects of microangiopathy.

2.
Handb Clin Neurol ; 187: 407-427, 2022.
Article in English | MEDLINE | ID: covidwho-1990833

ABSTRACT

Neuropathological examination of the temporal lobe provides a better understanding and management of a wide spectrum of diseases. We focused on inflammatory diseases, epilepsy, and neurodegenerative diseases, and highlighted how the temporal lobe is particularly involved in those conditions. Although all these diseases are not specific or restricted to the temporal lobe, the temporal lobe is a key structure to understand their pathophysiology. The main histological lesions, immunohistochemical markers, and molecular alterations relevant for the neuropathological diagnostic reasoning are presented in relation to epidemiology, clinical presentation, and radiological findings. The inflammatory diseases section addressed infectious encephalitides and auto-immune encephalitides. The epilepsy section addressed (i) susceptibility of the temporal lobe to epileptogenesis, (ii) epilepsy-associated hippocampal sclerosis, (iii) malformations of cortical development, (iv) changes secondary to epilepsy, (v) long-term epilepsy-associated tumors, (vi) vascular malformations, and (vii) the absence of histological lesion in some epilepsy surgery samples. The neurodegenerative diseases section addressed (i) Alzheimer's disease, (ii) the spectrum of frontotemporal lobar degeneration, (iii) limbic-predominant age-related TDP-43 encephalopathy, and (iv) α-synucleinopathies. Finally, inflammatory diseases, epilepsy, and neurodegenerative diseases are considered as interdependent as some pathophysiological processes cross the boundaries of this classification.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Neurodegenerative Diseases , Epilepsy/epidemiology , Epilepsy/pathology , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Humans , Temporal Lobe/pathology
3.
EBioMedicine ; 83: 104193, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1966506

ABSTRACT

BACKGROUND: Autopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain about whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, such as overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing. METHODS: We assessed publications using IHC and EM for SARS-CoV-2 detection in autopsy tissues. We systematically evaluated commercially available antibodies against the SARS-CoV-2 proteins in cultured cell lines and COVID-19 autopsy tissues. In a multicentre study, we evaluated specificity, reproducibility, and inter-observer variability of SARS-CoV-2 IHC. We correlated RT-qPCR viral tissue loads with semiquantitative IHC scoring. We used qualitative and quantitative EM analyses to refine criteria for ultrastructural identification of SARS-CoV-2. FINDINGS: Publications show high variability in detection and interpretation of SARS-CoV-2 abundance in autopsy tissues by IHC or EM. We show that IHC using antibodies against SARS-CoV-2 nucleocapsid yields the highest sensitivity and specificity. We found a positive correlation between presence of viral proteins by IHC and RT-qPCR-determined SARS-CoV-2 viral RNA load (N= 35; r=-0.83, p-value <0.0001). For EM, we refined criteria for virus identification and provide recommendations for optimized sampling and analysis. 135 of 144 publications misinterpret cellular structures as virus using EM or show only insufficient data. We provide publicly accessible digitized EM sections as a reference and for training purposes. INTERPRETATION: Since detection of SARS-CoV-2 in human autopsy tissues by IHC and EM is difficult and frequently incorrect, we propose criteria for a re-evaluation of available data and guidance for further investigations of direct organ effects by SARS-CoV-2. FUNDING: German Federal Ministry of Health, German Federal Ministry of Education and Research, Berlin University Alliance, German Research Foundation, German Center for Infectious Research.


Subject(s)
COVID-19 , Autopsy , Humans , RNA, Viral/analysis , Reproducibility of Results , SARS-CoV-2 , Viral Proteins
4.
Front Immunol ; 13: 844727, 2022.
Article in English | MEDLINE | ID: covidwho-1834403

ABSTRACT

The immunopathological pulmonary mechanisms leading to Coronavirus Disease (COVID-19)-related death in adults remain poorly understood. Bronchoalveolar lavage (BAL) and peripheral blood sampling were performed in 74 steroid and non-steroid-treated intensive care unit (ICU) patients (23-75 years; 44 survivors). Peripheral effector SARS-CoV-2-specific T cells were detected in 34/58 cases, mainly directed against the S1 portion of the spike protein. The BAL lymphocytosis consisted of T cells, while the mean CD4/CD8 ratio was 1.80 in non-steroid- treated patients and 1.14 in steroid-treated patients. Moreover, strong BAL SARS-CoV-2 specific T-cell responses were detected in 4/4 surviving and 3/3 non-surviving patients. Serum IFN-γ and IL-6 levels were decreased in steroid-treated patients when compared to non-steroid treated patients. In the lung samples from 3 (1 non-ICU and 2 ICU) additional deceased cases, a lymphocytic memory CD4 T-cell angiopathy colocalizing with SARS-CoV-2 was also observed. Taken together, these data show that disease severity occurs despite strong antiviral CD4 T cell-specific responses migrating to the lung, which could suggest a pathogenic role for perivascular memory CD4 T cells upon fatal COVID-19 pneumonia.


Subject(s)
COVID-19 , Pneumonia , Adult , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Lung , SARS-CoV-2
5.
Curr Opin Neurol ; 34(3): 417-422, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1183108

ABSTRACT

PURPOSE OF REVIEW: Over the course of the coronavirus disease (COVID-19) pandemic, it has become increasingly clear that there is a high prevalence of neurological complications in people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RECENT FINDINGS: Studies of central nervous system (CNS) tissue in brain model systems and from adults with acute SARS-CoV-2 infection have begun to uncover potential mechanisms for neurological damage during COVID-19. These studies suggest that direct viral invasion of the CNS occurs in a subset of cases but does not frequently cause overt viral meningoencephalitis. Vascular abnormalities including microvascular thrombi and endothelial activation, as well as parainfectious processes, including CNS specific immune responses, may contribute to neurological symptoms during acute SARS-CoV-2 infection. SUMMARY: Neuroimmune perturbations and vascular inflammation observed in people with COVID-19 may warrant investigation of immune-modulating interventions to ameliorate neurological complications associated with acute SARS-CoV-2 infection. These therapies may also impact the trajectory of potential long-term complications of COVID-19.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Humans , Immunotherapy , Nervous System Diseases/immunology , Nervous System Diseases/therapy , Vasculitis/etiology , Vasculitis/immunology
6.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: covidwho-1024074

ABSTRACT

Although COVID-19 is considered to be primarily a respiratory disease, SARS-CoV-2 affects multiple organ systems including the central nervous system (CNS). Yet, there is no consensus on the consequences of CNS infections. Here, we used three independent approaches to probe the capacity of SARS-CoV-2 to infect the brain. First, using human brain organoids, we observed clear evidence of infection with accompanying metabolic changes in infected and neighboring neurons. However, no evidence for type I interferon responses was detected. We demonstrate that neuronal infection can be prevented by blocking ACE2 with antibodies or by administering cerebrospinal fluid from a COVID-19 patient. Second, using mice overexpressing human ACE2, we demonstrate SARS-CoV-2 neuroinvasion in vivo. Finally, in autopsies from patients who died of COVID-19, we detect SARS-CoV-2 in cortical neurons and note pathological features associated with infection with minimal immune cell infiltrates. These results provide evidence for the neuroinvasive capacity of SARS-CoV-2 and an unexpected consequence of direct infection of neurons by SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Blocking/chemistry , COVID-19 , Cerebral Cortex , Neurons , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/virology , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Neurons/metabolism , Neurons/pathology , Neurons/virology , Organoids/metabolism , Organoids/pathology , Organoids/virology
7.
Intern Med J ; 50(12): 1551-1558, 2020 12.
Article in English | MEDLINE | ID: covidwho-991425

ABSTRACT

Nephrotic range proteinuria has been reported during the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). However, the pathological mechanisms underlying this manifestation are unknown. In this article, we present two cases of collapsing glomerulopathy (CG) associated with acute tubular necrosis during the course of COVID-19, and review the literature for similar reports. In our two cases, as in the 14 cases reported so far, the patients were of African ancestry. The 14 patients assessed had an APOL1 high-risk genotype. At the end of the reported period, two patients had died and five patients were still requiring dialysis. The 16 cases detailed in the present report strongly argue in favour of a causal link between SARS-CoV-2 infection and the occurrence of CG in patients homozygous for APOL1 high-risk genotype for which the term COVID-associated nephropathy (COVIDAN) can be put forward.


Subject(s)
Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , COVID-19/complications , COVID-19/diagnosis , Kidney Cortex Necrosis/diagnosis , Kidney Cortex Necrosis/etiology , Adult , Female , Humans , Middle Aged
8.
Radiology ; 297(3): E313-E323, 2020 12.
Article in English | MEDLINE | ID: covidwho-930394

ABSTRACT

Background This study provides a detailed imaging assessment in a large series of patients infected with coronavirus disease 2019 (COVID-19) and presenting with neurologic manifestations. Purpose To review the MRI findings associated with acute neurologic manifestations in patients with COVID-19. Materials and Methods This was a cross-sectional study conducted between March 23 and May 7, 2020, at the Pitié-Salpêtrière Hospital, a reference center for COVID-19 in the Paris area. Adult patients were included if they had a diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with acute neurologic manifestations and referral for brain MRI. Patients with a prior history of neurologic disease were excluded. The characteristics and frequency of different MRI features were investigated. The findings were analyzed separately in patients in intensive care units (ICUs) and other departments (non-ICU). Results During the inclusion period, 1176 patients suspected of having COVID-19 were hospitalized. Of 308 patients with acute neurologic symptoms, 73 met the inclusion criteria and were included (23.7%): thirty-five patients were in the ICU (47.9%) and 38 were not (52.1%). The mean age was 58.5 years ± 15.6 [standard deviation], with a male predominance (65.8% vs 34.2%). Forty-three patients had abnormal MRI findings 2-4 weeks after symptom onset (58.9%), including 17 with acute ischemic infarct (23.3%), one with a deep venous thrombosis (1.4%), eight with multiple microhemorrhages (11.3%), 22 with perfusion abnormalities (47.7%), and three with restricted diffusion foci within the corpus callosum consistent with cytotoxic lesions of the corpus callosum (4.1%). Multifocal white matter-enhancing lesions were seen in four patients in the ICU (5%). Basal ganglia abnormalities were seen in four other patients (5%). Cerebrospinal fluid analyses were negative for SARS-CoV-2 in all patients tested (n = 39). Conclusion In addition to cerebrovascular lesions, perfusion abnormalities, cytotoxic lesions of the corpus callosum, and intensive care unit-related complications, we identified two patterns including white matter-enhancing lesions and basal ganglia abnormalities that could be related to severe acute respiratory syndrome coronavirus 2 infection. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Brain/diagnostic imaging , Cerebrovascular Disorders/complications , Cerebrovascular Disorders/diagnostic imaging , Coronavirus Infections/complications , Magnetic Resonance Imaging/methods , Pneumonia, Viral/complications , Acute Disease , Adult , Aged , Aged, 80 and over , Betacoronavirus , Brain/physiopathology , COVID-19 , Cerebrovascular Disorders/physiopathology , Coronavirus Infections/physiopathology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL